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Abstract: Fluorescence molecular tomography (FMT), which is used to visualize the three-
dimensional distribution of fluorescence probe in small animals via the reconstruction method,
has become a promising imaging technique in preclinical research. However, the classical
reconstruction criterion is formulated based on the squared l2-norm distance metric, leaving
it prone to being influenced by the presence of outliers. In this study, we propose a robust
distance based on the correntropy-induced metric with a Laplacian kernel (CIML). The proposed
metric satisfies the conditions of distance metric function and contains first and higher order
moments of samples. Moreover, we demonstrate important properties of the proposed metric
such as nonnegativity, nonconvexity, and boundedness, and analyze its robustness from the
perspective of M-estimation. The proposed metric includes and extends the traditional metrics
such as l0-norm and l1-norm metrics by setting an appropriate parameter. We show that, in
reconstruction, the metric is a sparsity-promoting penalty. To reduce the negative effects of
noise and outliers, a novel robust reconstruction framework is presented with the proposed
correntropy-based metric. The proposed CIML model retains the advantages of the traditional
model and promotes robustness. However, the nonconvexity of the proposed metric renders the
CIML model difficult to optimize. Furthermore, an effective iterative algorithm for the CIML
model is designed, and we present a theoretical analysis of its ability to converge. Numerical
simulation and in vivo mouse experiments were conducted to evaluate the CIML method’s
performance. The experimental results show that the proposed method achieved more accurate
fluorescent target reconstruction than the state-of-the-art methods in most cases, which illustrates
the feasibility and robustness of the CIML method.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

As an important optical molecular imaging modality, fluorescence molecular tomography (FMT)
is a non-invasive molecular imaging technology that can observe imaging targets quantitatively
at the molecular level [1]. Thus, FMT can visualize biological and physiological processes
three-dimensionally (3D) and is widely used for tumor diagnosis and drug discovery [2,3]. FMT
allows visualization of the 3D distribution of fluorescent probes in the tissue by solving the
linear system of equations between a system matrix and the measured values of surface photons.
However, due to the strong scattering property of biological tissues and the limited boundary
measurements with noise, the reconstruction problem in FMT is severely ill-posed. To solve the
FMT reconstruction problem, efforts have been made from different aspects, e.g., improvement
of forward modeling [4], different configurations of the imaging hardware systems [5], various
regularization methods [6,7], and multimodal strategies combining CT or MRI [8,9].
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Compressed sensing (CS) has been widely used in signal and image processing fields. Based
on CS theory, a sparse signal can be reconstructed with far fewer measurements than Nyquist’s
sampling theorem requires [10]. Since the fluorescent source is usually small and sparse in
practical application, it is reasonable to apply the CS theory to the reconstruction of the fluorescent
targets. The classical CS reconstruction model consists of two parts, including the error term and
the regularization term. The error term measures empirical loss, and the regularization term
encourages sparsity of the signal. Traditional CS reconstruction models often utilize the l2 norm
error term, which is more appropriate for normally distributed data. However, the Gaussian
assumption cannot always be ascertained in many real application due to impulsive disturbances
or substantial outliers. Besides that, the detected surface optical signal is inevitably disrupted
by various types of noise during acquisition and transmission. Thus, the common used square
operation greatly exacerbates the noise effect. In contrast, the l1-norm is less sensitive to noise
than the l2-norm metric and the derivative of l1-norm is bounded (except for the point of origin),
which make the l1-norm error term a more competitive option in robust CS reconstruction [11].
In feature extraction [12], dimensionality reduction [13] and classification [14], the l1-norm has
proven capable of mitigating the effect of outliers well. However, the l1-norm may not be effective
enough to manage a large number of outliers owing to the unboundedness of the l1-norm.

For the early tumor detection, the size of the tumor is small compared with the entire
reconstruction region and they can be treated as sparse signals. Therefore, sparse regularization
methods are adopted to reconstruct the tumor, which can effectively suppress spurious background
signals and retain more details. Generally, sparsity problems can frequently be transformed into
a l0 regularization problem. Lee proposed a novel noniterative exact reconstruction algorithm to
achieve the optimal l0 for the measurement level increasing to unknown sparsity [15]. Although
the l0-norm characterizes the sparsity of a signal, the l0 optimization problem is NP-hard.
Moreover, its sensitivity to noise also presents difficulties in solving this problem. Thus, the
relaxation methods were proposed by replace the l0-norm by the continuous sparsity promoting
penalty function l1-norm. Several excellent theoretical works [16,17], have shown that the l1-norm
minimization can make an exact recovery when satisfied certain conditions, such as assuming
the restricted isometric property (RIP) [16]. Researchers have considered the combination of
CS theory and the l1-norm optimization algorithm for FMT reconstruction [18,19], including
the fast iterative shrinkage thresholding algorithm (FISTA) [20], l1-Homotopy [21], incomplete
variables truncated conjugate gradient (IVTCG) [22], and the greedy algorithm based on match
pursuit (MP) framework [23]. Furthermore, Dutta et al. proposed the joint l1 and total variance
regularization method that improves the smoothness of the image while maintaining sparsity [24].
Jiang et al. proposed the joint group sparse and LASSO method under the convex optimization
framework [18].

However, the l1-norm is not always a sound choice for numerical optimization because it
is non-differentiable at zero. Compared with the l0-norm method, the l1-norm reconstruction
methods have insufficient positional accuracy and robustness. For non-convex relaxation, the
lp-norm p ∈ (0, 1) seems to be the preferred choice. Zhu extended a non-convex regularization
method to accurately reconstruct the target in FMT [25]. In [26], Peng demonstrated that in every
underdetermined linear system Ax = b, there is a corresponding constant p∗(A, b)>0 such that
every solution to the lp-norm minimization problem also solves the l0-norm minimization problem
whenever 0<p<p∗(A, b). Presently, there are two main approaches to lp-norm minimization for
0<p<1. The first is the iteration reweighted least squares algorithm [27]. The other approach is
an iterative thresholding algorithm when p = 1

2 , 2
3 [28,29].

In statistical studies, correntropy is a local similarity measure based on information theoretic
learning. It can be regarded as a surrogate for the mean square error criterion in the kernel space
for measuring the similarity between two random variables in a neighborhood controlled by the
kernel bandwidth [30]. It is also a second-order statistic, effectively reducing the effect of large
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outliers, and is widely used in robust learning. Correntropy matching pursuit (CMP) [31] has
been applied to develop a robust sparse representation. The CMP method adaptively assigns
small weights on corrupted data entries and greater weights on clean ones, thereby reducing
the effect of large noise. He et al. [32] designed a maximum correntropy adaptation approach
for robust CS. Guo et al. [33] proposed a robust subspace clustering algorithm based on the
correntropy-induced metric. These algorithms confirm that the correntropy-induced metric is
robust against outliers.

Inspired by the studies of the correntropy-induced metric, we present a robust and efficient
reconstruction algorithm based on the correntropy-induced metric with a Laplacian kernel (CIML)
for FMT to reduce noise interference and produce more accurate results. Firstly, we present a
correntropy-induced metric, which satisfies the properties of boundedness, non-convexity, non-
negativity, triangle inequality, and approximation behaviors. Thus, compared with the traditional
loss functions, the metric contains the first-order and higher-order moments information from the
perspective of M-estimation theory to guarantee the robustness of it [34]. Secondly, based on the
correntropy-induced metric, we propose a non-convex reconstruction model with an adaptive
regularization function. Thirdly, to solve the non-convex model, we decompose the objective
function into two proper convex functions and solved it by the difference of convex algorithm
(DCA) [35,36]. In addition, the convergence of the CIML algorithmn is proven. To validate the
performance of the proposed model and algorithm for FMT reconstruction, numerical simulation
experiments and in vivo mouse experiments were conducted.

The remainder of the paper was organized as follows. In section 2, we gave a brief review
of the FMT reconstruction model, the concept and property of correntropy, and the DCA. The
reconstruction algorithm based on correntropy was proposed and the convergence of the algorithm
was analyzed in section 3. Numerical simulation and in vivo experiments were conducted to
validate the performance of the proposed model and algorithm. The evaluation indices and
experimental results were presented in section 4. Discussion and conclusion were given in section
5.

2. Background

In this section, we formulate the problem of recovering the fluorescence target, derive the
definition of correntropy, and briefly introduce its property. Last, we present the standard form of
the DC algorithm and the properties of the algorithm’s solution.

2.1. Reconstruction problem

FMT reconstruction relies on the diffusion of light transmission in biological tissue. Based on
finite element analysis, the measurements that cannot be observed are removed and a linear
relationship between the unknown fluorescent source within the tissue and the surface photon
density is established. The final matrix equation is formed as [37]:

Ax = Y (1)

where A ∈ RM×N(M ≪ N) is a weight matrix used to map the unknown fluorescence source
distribution to known measurements, Y ∈ RM is the measured light flux at the boundary of the
biological tissue and x ∈ RN represents the distribution of the unknown source in biological
tissues.

FMT reconstruction is aimed at solving the inverse problem of Eq. 1. Generally, given the
noise in the FMI measurement and the ill-posed problem in the weight matrix A, it is impractical
to solve x directly. To obtain an acceptable approximate solution, the sparsity term to the object
function is usually be engaged. The traditional sparse reconstruction model with l0 regularization
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is as follow:
arg min

x

1
2
∥ Ax − Y ∥2

2 +λ ∥ x ∥0 (2)

where λ is the regularization parameter used to balance the loss term and the penalty term. In
this study, a correntropy-induced metric based on the Laplacian kernel function was proposed to
replace the l2-norm loss term, and a non-convex sparsity-promoting penalty function was used to
approximate l0-norm. The details of the non-convex reconstruction model were described in
section 3.

2.2. Definition and property of correntropy

Cross correntropy between two random variables U and Z is defined as [30]:

Vσ(U, Z) = E[κσ(U − Z)] (3)

where κσ is a kernel function with size parameter σ, E is the mathematical expectation. The
Gaussian kernel is the preferred kernel in correntropy, given by:

κσ(ui, zi) =
1

√
2πσ

exp(−
(ui − zi)

2

2σ2 ) (4)

But the joint probability density function(PDF) is unknown and only a limited amount of data
{(ui, zi), i = 1, . . . , m} are available in practice, leading to the empirical correntropy being:

VM,σ(U, Z) =
1
m

m∑︂
i=1
κσ(ui − zi) (5)

We introduce property of correntropy as proved in [30]. Assume the joint pdf of the samples
{(ui, zi)}

m
i=1 is fU,Z(u, z). E = Z − U is defined as the error random variable. fE;σ(e) is the Parzen

estimate of the error pdf from data {(ei = ui − zi)}
m
i=1. Vσ(U, Z) is equal to the value of fE;σ(e)

evaluated at the point e = 0:
Vσ(U, Z) = fE;σ(0) (6)

2.3. DC algorithm

DC programming and DCA (DC Algorithm), which constitute the backbone of global optimization
and non-convex programming, were introduced by Pham Dinh Tao in 1985. The DCA solves the
problem of minimizing a function f , which is the difference of the convex functions over the
entire space Rn or on a convex set C ⊂ Rn [35,36]. A standard DC program is structured as:

α = inf {f (x) = g(x) − h(x) : x ∈ ℜn} (Pdc) (7)

where g(x), h(x) are lower semi-continuous proper convex functions defined on Rn.
The main purpose of a DCA, which is an iterative method, is to replace at the point xl of iteration

l in the DC program. The second component h(x) is approximated by its affine minorization hl(x)
and defined by:

hl(x) = h(xl) + <x − xl, yl>, yl ∈ ∂h(xl) (8)

The minorization produces the convex program formed as:

inf {g(x) − hl(x) : x ∈ Rn} ⇔ inf{g(x) − <x, yl> : x ∈ Rn} (9)

the optimal solution of which is taken as xl+1.
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The DCA is a descent method with no line search, but with global convergence, it has the
following properties (for simplicity, we have omitted the dual part of the following properties)
[36]:

(1) The DCA linearly converges for general DC programming;
(2) If h(x) is differentiable, the subdifferential of h(x) at point xl is reduced to a singleton. At

this time, xl+1 is the solution of the following convex program:

min{g(x) − (h(xl) + ∇h(xl)T (x − xl))} (10)

The DCA is an effective algorithm for solving a non-convex model. The above properties are
applied to the next part.

3. Methods

This section proposes a robust method for solving the reconstruction problem. First, the properties
of the robust metric are introduced. Then, we introduce the convex function of DC decomposition
to the inverse problem based on the metric and propose the algorithm. Finally, the convergence
of the algorithm is proven.

3.1. Metric of correntropy induced by the Laplacian kernel

In this study, we used the Laplacian kernel as the correntropy kernel function, given by:

kσ(w1, w2) = e−σ |w1−w2 | (11)

where kσ is a kernel function with size parameter σ(σ>0), w1 and w2 are two random variables.
Based on the above, correntropy induces a robust metric,

eσ(w) = 1 − e−σ |w | , ∀w ∈ R (12)

By using correntropy as an error metric, the required vector x is estimated iteratively by
maximizing the formula:

JMCC =
1
M

M∑︂
i=1

exp−σ |yi−Aix | (13)

where Ai represents the i-th row of the weight matrix A. The above formula is called the maximum
correntropy criterion(MCC). The properties of the robust metric are given below.

Property 1 eσ(w) defines a metric in the sample space. As a metric, the following conditions
must be obeyed:

(1) Non-negativity. eσ(w1, w2) = 1 − e−σ |w1−w2 | ≥ 0.
(2) Identity of indiscernibles. eσ(w1, w2) = 0 if and only if w1 = w2.
(3) Symmetry. eσ(w1, w2) = eσ(w2, w1).
(4) Triangle inequality. For σ ≥ 0, any positive w1 ∈ R and w2 ∈ R, the following triangle

inequality must be satisfied:

eσ(w1 + w2) ≤ eσ(w1) + eσ(w2)

Proof: See Supplement 1.
Property 2 The eσ(w1, w2) is positive and bounded, i.e., 0 ≤ eσ(w1, w2)<1. It reaches

minimum if and only if w1 = w2. When w1 and w2 are distant enough, eσ(w1, w2) tends to, but
cannot reach, 1. (As shown in Fig. 1).

Property 3 The proposed metric eσ(w1, w2) contains the first and higher order moments of
signal information.

Proof: See Supplement 1.

https://doi.org/10.6084/m9.figshare.16533243
https://doi.org/10.6084/m9.figshare.16533243
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Fig. 1. l1 norm and eσ(w) with different σ values.

Property 4 The metric eσ(w) is a positive, symmetrical, and bounded. From the viewpoint of
robust statistics, in this setting the metric is insensitive to outliers. It reaches its minimum if and
only if w = 0, if w → ∞, lim eσ(w) = 1. It satisfies:

∇eσ(w) =
⎧⎪⎪⎨⎪⎪⎩
σe−σw, if w>0

−σeσw, if w<0
(14)

We have
lim

w→+∞
(σe−σw) = 0, lim

w→−∞
(−σeσw) = 0 (15)

The proposed metric eσ(w) is differentiable and its derivative is bounded, except at the point
w = 0. According to M-estimation theory [34], the metric eσ(w) is insensitive to noise and
outliers. In this sense, the large error term is attenuated similar to the weighting function, for the
outlier to have reduced influence on the adaptation.

Based on the nature of sparse recovery, the l0 penalty is the target penalty, whereas other
penalties may also be capable of recovering the target. As mentioned before, the l0 penalty is
undesirable from the computational perspective due to its discontinuity and discreteness. It is well
known that the l2 penalty is analytically tractable, but generally produces non-sparse solutions.
Such difficulties motivated the use of penalties that are computationally tractable approximations
or relaxations of the l0 penalty. Among all proposals, the l1 penalty has attracted much research
attention to sparse recovery. It has been recognized that the l1 penalty does not infallibly point us
to the true underlying sparse model. Fan and Li [38] advocated for classes of penalty functions
with three desired properties: unbiasedness, sparsity, and continuity. Following this, Fan and Lv
[39] proposed the condition for characterizing unbiasedness and sparsity promoting properties.
Then, the penalty function satisfies the following condition as defined in [39].

Definition 1 The function ρ(t), is called proper as a penalty function if ρ(t) such that:
C1: ρ(t) increases and is concave in t ∈ [0,∞);
C2: ρ′(t) is continuous with ρ′(0+) ∈ (0,∞);
C3: if ρ(t) depends on a positive parameter λ, then ρ′(t; λ) increases in λ ∈ (0,∞) and ρ′(0+)

is independent of λ.
It follows that e′

σ(w) is positive and decreasing, and e′

σ(0+) is the upper bound of e′

σ(w).
It is shown in [38] that penalties satisfying Condition 1 and limw→∞ e′

σ(w) = 0 enjoy both
unbiasedness and sparsity.
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Property 5 For any W = (w1, w2, . . . , wn)
T ∈ Rn, the following formula is established,

eσ(wi) = 1 − e−σ |wi | =

⎧⎪⎪⎨⎪⎪⎩
0 wi = 0

1 wi ≠ 0,σ → +∞
(16)

Thus, the robust metric induced by the Laplacian kernel proposed in this paper is geometrically
equivalent to l0 norm:

eσ(W) =

n∑︂
i=1

(1 − e−σ |wi |) = ∥W ∥0 (17)

Let σ be a fixed value. If wi tends to the infinitesimal, it can be obtained by Taylor expansion:∑︁n
i=1(1−e−σ |wi |) =

∑︁n
i=1 σ |wi |, eσ(W) is less sensitive to large noise compared with the Euclidean

distance index. This renders the metric more robust (σ = 1,
∑︁n

i=1 σ |wi | = ∥W ∥1). Figure 1 shows
the change curve of eσ(W) under different σ and the l1-norm curve. Property 5 indicates that
eσ(W) smoothly interpolates between l0-norm and l1-norm through a non-negative parameter σ.

3.2. DC algorithm based on a robust metric

We use the metric induced by the Laplacian kernel to measure the similarity between the measured
value y of the surface photon density and the estimated value Ax. Therefore, the correntropy
based reconstruction can rewrite Eq. 2 as the following optimization problem:

min
x

M∑︂
i=1

(1 − e−σ |yi−Aix |) + λ∥x∥0 (18)

Since the l0 is non-differentiable, a general way is to approximate ∥x∥0 by a non-convex function
to overcome this difficulty,

∥x∥0 ≈

N∑︂
k=1

(1 − e−β |xk |) (19)

where β is a free parameter and xk is the k-th element of the vector x, which is to be reconstructed.
Therefore, the vector x can be iteratively estimated by minimizing the following function:

min
x

M∑︂
i=1

(1 − e−σ |yi−Aix |) + λ

N∑︂
k=1

(1 − e−β |xk |) (20)

The objective function is a non-convex function, which is difficult to solve directly. In this
paper, we use DCA to solve the problem and decompose the non-convex function into two lower
semi-continuous proper convex functions. The eσ(w) = 1 − e−σ |w | can be expressed as a DC
function:

eσ(w) = g(w) − h(w) (21)

where
g(w) = σ |w|, h(w) = σ |w| − (1 − e−σ |w |) (22)

are convex functions. Through DC decomposition, the optimization problem of the Eq. 20 is
equivalent to solving the optimization problem of the DC function,

min
x
[E(x) − F(x)] (23)

where

E(x) =
M∑︂
i=1
σ |yi − Aix| + λ

N∑︂
k=1
β |xk | (24)
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F(x) =
M∑︂
i=1

(σ |yi − Aix| − (1 − e−σ |yi−Aix |)) + λ

N∑︂
k=1

(β|xk | − (1 − e−β |xk |)) (25)

Use the DC algorithm to optimize the DC function (Eq. 23), where E(x) and F(x) are lower
semi-continuous functions on Rn,

minf (x) = E(x) − F(x), x ∈ Rn (26)

During iteration, use the affine projection of function F(x) at the current iteration point xl to
approximate the replacement function F(x), where the affine projection of F(x) is:

Fl(x) = F(xl) + <x − xl, vl>, vl ∈ ∂F(xl) (27)

Therefore, optimizing the DC function is equivalent to optimizing the Eq. 28:

min[E(x) − Fl(x)] ⇒ min[E(x) − <x, vl>], x ∈ Rn (28)

where:

vl =

M∑︂
i=1

[−σsign(yi − Aixl)Ai + σe−σ |yi−Aixl |sign(yi − Aixl)Ai]+

λ

N∑︂
k=1

[βsign(xl
k) − e−β |x

l
k |sign(xl

k)β]

(29)

Each iteration solves a sub-optimization problem,

xi+1 = arg min
x

M∑︂
i=1
σ |yi − Aix| + λ

N∑︂
k=1
β |xk | − <x, vi> (30)

Since Eq. 30 contains absolute value operations we introduce the variables t1 and t2 with
|yi − Aix| ≤ (t1)i, i = (1, 2, . . . , M) and |xk | ≤ (t2)k, k = (1, 2, . . . , N), the above problem is
reformulated as linear programming:

min
t1,t2,x

M∑︂
i=1
σt1 + λ

N∑︂
k=1
βt2 − <x, vi>

s.t. |yi − Aix| ≤ (t1)i, i = (1, 2, . . . , M)

|xk | ≤ (t2)k, k = (1, 2, . . . , N)

(31)

where t1 and t2 are M-dimensional and N-dimensional column vectors, respectively. DCA is an
iterative algorithm, and in a finite number of iterations, the algorithm converges to a critical point
to satisfy the necessary optimality condition. We will design an efficient iterative algorithm for
solving the optimization problem, which is depicted in Algorithm 1.

3.3. Convergence analysis

Theory 1. The resulting sequence {xi} converges when using the DC algorithm to solve the
non-convex optimization Eq. 20.
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Algorithm 1 DC programming algorithm for the CIML
Initialize: Choose Laplacian kernel width σ, regularization parameter λ, initial iteration number
i = 1 and vector x(0) = 0, set the error tolerance ε and maximum iteration number C ;
Iteration: (1) While |xi+1 − xi | > ε ∥ i < C do;
(2) Calculate gradient vi ∈ ∂F(xi) = Eq.(29);
(3) Solve linear programming to obtain xi+1

mint1,t2,x
∑︁M

i=1 σt1 + λ
∑︁N

k=1 βt2− < x, vi >
s.t. |yi − Aix| ≤ (t1)i, i ∈ (1, 2, . . . , M)

|xk | ≤ (t2)k, k ∈ (1, 2, . . . , N);
(4) Update iteration number: i = i + 1.

Proof. Regarding the optimal solution concept, the following inequality is satisfied:

E(xi+1) − ∇F(xi)Txi+1 ≤ E(xi) − ∇F(xi)Txi (32)

it can be written as:
∇F(xi)T (xi − xi+1) ≤ E(xi) − E(xi+1) (33)

Due to the convexity of F(·), we have:

F(xi+1) − F(xi) ≥ ∇F(xi)T (xi+1 − xi) (34)

By combining the above inequalities, we have:

E(xi+1) − F(xi+1) ≤ E(xi) − F(xi) (35)

Therefore, the objective value of the problem 20 decreases monotonically with each iteration.
Moreover, the objective of the problem is lower bounded by 0. Thus, the convergence of sequence
{xi} can be proved.

4. Experiments and results

In this section, numerical simulation experiments and in vivo experiments were conducted to
validate the performance of the CIML method, which was compared with the FISTA, Homotopy,
and IVTCG methods in terms of accuracy, efficiency, and robustness. All the reconstruction
algorithms were performed in MATLAB and run on a desktop computer with 4 GB RAM and a
3.60 GHz Intel Core i7 CPU.

4.1. Evaluation index

To quantitatively evaluate the accuracy of the proposed reconstruction method for both source
location and shape recovery, several indices including location error (LE), contrast-to-noise ratio
(CNR), normalized mean square error (NMSE), reconstructed fluorescent yield (RFY), Dice
index and Time were calculated in this study.

The LE measures the distance between the center of the reconstructed region and the real
fluorescent region. It is defined as:

LE = ∥Lr − La∥2 (36)

where Lr and La are the center coordinates of the reconstructed region and the actual fluorescent
source, respectively. ∥ · ∥2 is the Euclidean distance operator.
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The CNR, which is mainly affected by artifacts and noise in reconstructed images, is used for
evaluation of image contrast. The higher the CNR value, the easier to distinguish the fluorescent
source from the background. The CNR is defined as follows:

CNR =
|µROI − µROB |

(ωROIσ
2
ROI + ωROBσ

2
ROB)

1
2

(37)

where the subscripts ROI and ROB denote the real source region in 3D tetrahedral mesh and
the Non-source region in the entire 3D reconstruction region, respectively. µ, σ2, and ω are the
mean intensity value, variance, and the weighting factor calculated by the relative volume of the
corresponding region, respectively.

The NMSE denotes the relative error between the true and the reconstructed source positions,

NMSE =
∥xr − xt∥

2
2

∥xt∥
2
2

(38)

where xr and xt are the recovered and true locations, respectively.
The RFY is used to evaluate the average reconstructed fluorescence yield of the real area and

is defined as follows:
RFY =

∑︁
Y

N
(39)

where Y is the fluorescence yield of the node in the 3D tetrahedral mesh of the reconstruct source,
and N is the number of nodes of the tetrahedral mesh of the reconstruct source. The larger the
RFY, the better the reconstruction performance.

The Dice coefficient is employed to evaluate the spatial structure similarity of the reconstructed
source and the true source,

Dice =
2|X ∩ Y |
|X | + |Y |

(40)

where X and Y are the reconstructed region and the actual fluorescent region, respectively.
Greater Dice coefficient indicate better morphological reconstruction.

4.2. Numerical mouse simulation experiment

The experimental model used a numerical mouse simulation [40]. The numerical mouse consisted
of five organs: lung, heart, stomach, liver, kidneys, and muscle tissue. The optical parameters of
each organ and the muscle tissue are shown in Table 1 [41]. The reconstruction of a cylindrical
source was used to assess the performance of the proposed method for recovery. A cylindrical
fluorescence source S with a diameter of 1.6 mm and 1.6 mm height was implanted into the liver
of the digital mouse at the point (18, 7, 17.5) mm, as shown in Fig. 2(a). There are four isotropic
point excitation light sources on the Z = 17.5 mm plane. During each excitation, the optical
data were acquired within a FOV of 120 degree from the side opposite the excitation source.
With four excitations, we obtained four measurement data sets. The digital mouse model was
meshed with 13655 nodes and 74761 tetrahedral elements in the forward process, and its forward
simulation result was shown in Fig. 2(b). The meshed simulation model contained 8526 nodes
and 45452 tetrahedrons after simple mapping between nodes in the inverse process.

The 2D cross-sectional view and 3D rendering of the reconstructed source results by four
methods in numerical simulations are presented in Fig. 3. The results of the quantitative analysis
of the reconstruction are listed in Table 2. In the 2D slice, the true location of the light source is
indicated by the black circle and the colored area represents the reconstructed source. In the 3D
view, the red cylindrical and the yellow area represent the authentic fluorescent source and the
reconstructed fluorescent source, respectively.
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Fig. 2. (a) is the 3D view of the numerical mouse model. The diameter and height of the
cylindrical fluorescent source are all set to be 1.6 mm in the liver; (b) The forward mesh and
the photon distribution on the surface of the single source.

Table 1. Optical parameters of the numerical mouse phantom.

Material Muscle Lung Heart Liver Kidneys Stomach

µax(mm−1) 0.0052 0.0133 0.0083 0.0329 0.066 0.0114

µ
′

sx(mm−1) 1.08 1.97 1.01 0.70 2.25 1.74

µam(mm−1) 0.0068 0.0203 0.0104 0.0176 0.0380 0.0070

µ
′

sm(mm−1) 1.03 1.95 0.99 0.65 2.20 1.36

Fig. 3. The reconstruction results of the numerical mouse experiments using four methods.
(a)the FISTA method, (b)the Homotopy method, (c)the IVTCG method, and (d)the CIML
method. The first row illustrates the cross-sectional views in the z= 17.5 mm plane and the
second row illustrates the reconstruction results of the 3-D views corresponding to (a)-(d).
The black circle in the cross-sectional views indicates the real position of the fluorescent
source.
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Table 2. Quantitative results for the four methods used in the single-source numerical simulation.

Method Reconstruction center CNR LE NMSE RFY Dice Time

FISTA (17.51, 7.06, 17.14) 14.12 0.61 0.2072 3.26e-03 0.5612 43.39

Homotopy (17.52, 6.77, 17.09) 42.40 0.67 0.0433 5.93e-03 0.5855 0.72

IVTCG (17.53, 7.10, 17.13) 40.45 0.61 0.0871 2.38e-04 0.6286 0.19
CIML (17.66, 7.26, 17.66) 55.12 0.46 0.0325 9.87e − 03 0.7259 9.35

The Homotopy method produces a distorted target shape and has the largest LE indicating
the poorest location tracing (Fig. 3(b) and (f)). The spatial biases generated by the CIML and
IVTCG methods are much smaller compared with the Homotopy and FISTA methods. Regarding
NMSE and spatial resolution, the reconstructed result obtained using the FISTA method is a
little poorer than the reconstruction by other methods (Fig. 3(a) and (e)). Conversely, the source
reconstructed by the CIML method is closest to the true source.

As shown in Table 2, the CIML method obtained the most accurate reconstruction results with
the smallest LE of 0.46 mm which was 75% that of the FISTA (0.61), IVTCG(0.61), and 69%
that of the Homotopy (0.67) methods, and had the smallest NMSE, indicating that it was closest
to the true position. The CIML method also had the highest CNR compared to the other three
methods. Moreover, the Time of CIML was shorter compared to the FISTA method. The CIML
method achieved the most accurate results with highest Dice of 0.7259, which means that the
CIML has the best reconstruction performance in both accuracy and morphology.

In addition to the most accurate reconstruction of the light source position and shape, the
CIML method also achieved the highest fluorescence yield (Table 2) within the reconstructed
light source compared with the other three algorithms. The RFY obtained by the CIML method
was 9.87e-03, which was about 300% that of the FISTA method, about 170% that of Homotopy,
as well as about 4100% that of IVTCG methods. The simulation results demonstrate that the
CIML method was able to solve the FMT reconstruction problem more accurately.

4.3. Robustness

As mentioned in section 1, in FMT, noise is inevitable. Therefore, the robustness of the algorithm
is critical for reconstruction. Tests were performed to verify the robustness and accuracy of the
CIML method under different noise species and intensities. In this experiment, the measurement
data sets were artificially corrupted by 10-25% Gaussian noise and Poisson noise, respectively.
The quantitative results of four algorithms under interference by noise of different kinds are
displayed in Fig. 4 and in Fig. 5, respectively.

As shown in Fig. 4 and Fig. 5, for the same noise of the Gaussian and Poisson intensity, the
CIML method obtained smaller LE, NMSE and larger Dice results than the three conventional
methods, which indicates that the reconstructed position of the CIML method was the closest
to the real position. These advantages of the CIML were more obvious in the test of Poisson
noise. The LE ranges of the proposed method and the FISTA method were 0.44-0.50 mm and
0.61-0.62 mm, respectively, at the four Gaussian noise levels (Fig. 4(a)). However, the FISTA
method produced the largest NMSE (Fig. 4(c)). The LE of the Homotopy method rose rapidly,
indicating that the reconstruction result was affected by noise. The results showed that the CIML
method provided a more robust reconstruction of the fluorescent source compared with the
other methods when the noise intensity increases, and had similar performance for the test of
Poisson noise (Fig. 5(a), (c), (e)). In contrast, the RFY variation ranges of the CIML method
were 0.0088-0.0125, 0.0089-0.0129 when the level of the Gaussian and Poisson noise ranged
from 10% to 25%, respectively (Fig. 4(d) and Fig. 5(d)). The CIML method provided the highest
RFY within the reconstructed light source, which was much higher than the other methods,
indicating that the CIML method can restore the fluorescence distribution effectively. In addition,
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Fig. 4. The quantitative analysis of different methods under different Gaussian noise
intensities.

Fig. 5. The quantitative analysis of different methods under different Poisson noise
intensities.
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the proposed method produced the highest CNR showing that the CIML method had a better
reconstruction performance than the other methods, in contrast with noise interference (Fig. 4(b)
and Fig. 5(b)). Figure 4 and Fig. 5 also show that the reconstruction performance of the CIML
method was superior to the other methods and increased noise intensities. The quantitative
results further confirm that the CIML method was able to significantly improve the quality of
reconstruction when the data in the measurement sets containing noise. The experiment results
demonstrate that noise had no obvious effect on our reconstruction framework and the CIML
method had the highest accuracy and robustness to manage the Gaussian and Poisson noise
problem. This also demonstrates that our method surpassed the other algorithms.

According to the qualitative analysis introduced above, we can draw the following conclusions.
Even if the measurement data sets were destroyed by 25% noise, the CIML method still obtained
effective results compared with the other methods. This demonstrates that our proposed method
is not sensitive to noise, and the algorithm is more robust. Compared to the l1 regularization
methods, the CIML method has excellent convergence, and its robustness is superior.

4.4. Stability

To evaluate the stability of the four methods, the influence on reconstruction of the number of
nodes was studied. The nodes with different numbers ranging from 2460 to 10692 were adopted
for reconstruction. The quantitative results for all the evaluation indexes are shown in Fig. 6.
The LEs and NMSEs of the CIML, FISTA, Homotopy and IVTCG methods are shown to have
varied from 0.36 to 1.07 and 0.0298 to 0.0954, 0.50 to 1.48 and 0.0920 to 0.2908, 0.38 to 1.36
and 0.0269 to 0.1847, 0.56 to 1.55 and 0.0842 to 0.2154, respectively, as the number of nodes
increased. The ranges of change of the CIML method were more gradual compared with the
other three algorithms. Notably, when the number of nodes exceeded 7795, the performance
remained relatively stable. Figure 6(d) shows that the RFYs of the four algorithms rise as the
number of nodes increases. The RFYs of different numbers of nodes of the CIML method which
far exceeded than that of the FISTA method and the IVTCG method, except for 2460, were all
above 0.005. In addition, the fluorescence reconstructed by the CIML method had high contrast,
which was much larger than the other three contrast algorithms, except for 10692, and finally
tended to flatten as the number of nodes increased. Moreover, the Dice coefficient of the CIML
increased with the number of nodes, except for 6341, and far exceeds the other three comparison
methods. The reconstruction time by the CIML method was increased, but the speed of increase
was less than that of the FISTA method as the number of nodes increased. According to the
experimental results given above, the CIML method had better stability than the three methods
despite the increased number of nodes.

4.5. Efficiency

To test and further observe the influence of excitation points on the reconstruction result, the
number of excitation sources was gradually increased. For reconstruction, the digital mouse was
meshed by 4623 nodes and 25089 tetrahedral elements. The numerical results from six to 36
different excitation points are shown in Fig. 7. The Fig. 7(a) and (c) show that the LE and NMSE
of the CIML reduce when the number of excitation points are increased, except for the excitation
point is 12, but the LEs of the CIML which were smaller than the other three algorithms at the
same number of excitation points, and all remain below 0.53 mm. As seen in Fig. 7(d), the
RFYs of the CIML method were much higher than the comparison algorithms as the number
of excitation points increases, except for the Homotopy method at 36 excitation points. The
Dice coefficient of each method increased as the excitation point increased, but the Dice of the
CIML method were larger than the other three methods at the same excitation point, as shown in
Fig. 7(e). Meanwhile, the CNR of the four methods all decreased correspondingly, but the CNR
of the CIML method both were higher than 42 and far surpass than the other methods, as shown
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Fig. 6. The quantitative analysis of different methods under different numbers of nodes.

in Fig. 7(b). It is certain that more excitation sources could achieve more accurate reconstruction
results, but as the measurement data increase, the amount of computational cost required also
rapidly increase, especially for the FISTA method and the CIML method, as shown in Fig. 7(f).
Consequently, it is apparent that the CIML method also has an excellent reconstruction effect
with six excitation points.

Fig. 7. The quantitative analysis of different methods with different numbers of excitation
sources.

4.6. Double-target reconstruction

The algorithm’s capability for multiple-target reconstruction is critical. To assess further the
location accuracy and robustness of the CIML method, a dual-source numerical simulation
experiment was also conducted. Two cylindrical targets were implanted into the liver. S1 and S2
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located at (13, 7, 17) mm and (21, 7, 17) mm, respectively. The fluorescent yields of both were
set to 0.05 mm−1. The diameters and heights of the two sources were set to 2 mm and 1 mm,
respectively. To reconstruct the fluorescent sources, the digital mouse was discretized into 15647
nodes and 86389 tetrahedral elements in the forward process, while the process of reconstruction
contained 7850 nodes and 43221 tetrahedrons.

The 3D rendering and cross-section views of the reconstruction results using different methods
are displayed in Fig. 8. In the 3D view, the red cylinders and the yellow areas respectively denote
the authentic fluorescent sources and the reconstructed fluorescent source regions. The black
circles in the cross-sectional views denote the actual positions of the fluorescent targets and the
color areas represent the reconstructed sources.

Fig. 8. The transverse slice views in the Z=17 mm of the FISTA, the Homotopy, the IVTCG
and the CIML methods are presented in the first row, while the second row illustrates the
3-D reconstruction results corresponding to the four methods.

From the cross-sectional views, the CIML method is confirmed to have better multi-target
resolution than the FISTA method and obtained more clearly reconstructed results than the
Homotopy and IVTCG methods as shown in the Fig. 8 3D view. In morphological reconstruction,
the CIML method has a superior spatial overlap between the reconstructed and true sources and is
better positioned near the authentic sources. The comparisons confirm that the CIML method’s
reconstruction performance was superior.

The quantitative results of the four methods are summarized in Table 3, which further
confirms these observations. The FISTA method was only able to accurately reconstruct S1, the
reconstruction of S2 result in over-shrinkage. Although the Homotopy, and IVTCG methods were
able to acquire two sources, the CIML method achieved a much smaller LE and much higher Dice
than the other three methods, which were up to 0.6156 and 0.5385, thus demonstrating the CIML
method obtained accurate source localization and morphological reconstruction. Moreover, the
NMSE of the CIML method was smaller than of the other methods, which confirms that the
CIML method has the highest reconstruction accuracy. The CIML method relatively spent a long
period of time than the Homotopy and IVTCG methods. The RFY of the CIML method was 17
times that of the FISTA and 7 times that of IVTCG methods, which shows that the CIML method
significantly improved the fluorescent yield. Notably, the CNR of the CIML method was much
larger than the FISTA and IVTCG methods, demonstrating that the CIML method reconstructed
contrast better. These numerical simulation experiments have revealed that the CIML method



Research Article Vol. 12, No. 10 / 1 Oct 2021 / Biomedical Optics Express 6007

achieved better performance for source location, morphology, and fluorescence yield. The in
vivo experiment in the next section also confirmed this conclusion.

Table 3. Quantitative analysis of different methods with a double-target.

Method Reconstruction center CNR LE NMSE RFY Dice Time

FISTA
(20.92, 6.73, 16.39)

8.28
0.68

0.1157 2.73e-04
0.5185

58.03
(13.19, 5.75, 16.73) 1.29 0.1905

Homotopy
(19.92, 7.43, 17.03)

39.57
1.16

0.0343 3.64e-03
0.1212

0.86
(13.02, 6.32, 16.87) 0.69 0.4614

IVTCG
(19.87, 7.26, 17.09)

7.28
1.16

0.0571 6.31e-04
0.3581

1.73
(12.96, 6.52, 17.08) 0.49 0.5135

CIML
(20.99, 6.93, 16.45)

33.19
0.55

0.0176 4.53e − 03
0.5385

9.84
(13.00, 6.70, 17.21) 0.36 0.6156

4.7. In-vivo experiment

To investigate further the practical performance of the CIML method, in vivo mouse experiments
were conducted under the guidelines of the Air Force Military Medical University Guide for the
Care and Use of Laboratory Animals formulated by the National Society for Medical Research. In
vivo experiment use an adult BALB/C mouse. In this experiment, the surface fluorescence image
of the probe and CT data were acquired via a dual-modality FMT/CT system. The micro-CT
imaging system consists of an x-ray tube (Oxford Instruments series 5000 Apogee X-ray tube,
X-ray Technology Inc., CA) with a focal spot size of 35 µm and a high-resolution flat panel
x-ray detector (Hamamatsu C7921CA-02, Hamamatsu city, Japan) with a 1032 × 1012 pixel
photo diode array with a 50 µm pixel pitch. A fluorescent bead (diameter 1.2 mm and height
7.5 mm) was injected into the abdomen of the mouse with a Cy5.5 solution. The extinction
coefficient of the Cy5.5 solution with a concentration of 2000 nM was 0.019 mm−1µM−1, and the
quantum efficiency was 0.23. The peak excitation and emission wavelengths of the probe are
670 nm and 710 nm, respectively [42]. The detector’s FOV was 180◦ and four projections were
used to acquire fluorescence data. After the optical images were acquired, structural information
was collected from the mouse using a micro-CT system to represent the real distribution and
provide prior information of the fluorescence. The major organs were segmented according to
the CT data and then integrated into the heterogeneous mouse model. The optical parameters for
different organs are shown in Table 4 [41]. The fluorescence image was projected on the mouse’s
surface by CT, then registered to the standard mesh. The mouse was discretized into meshes with
Amira 5.2 and the fluorescence image was mapped to these meshes to obtain the measurement
data [43]. As shown in Fig. 9, the areas indicated by the white circle in CT images were the real
target distribution and the real position of the target was (20.3 mm, 28.8 mm, 8.8 mm). The
mouse model was discretized into 3905 nodes and 18986 tetrahedral elements for reconstruction.

The 3D views and the cross-sectional views are displayed in Fig. 10. The red cylinder indicates
the true position of the fluorescent bead. Fig. 10 shows that the IVTCG method produced more
reconstruction artifacts, and the Homotopy method could not obtain a feasible reconstruction
result because of interference from the background fluorescence signal. Moreover, the CIML
method achieved accurate reconstruction with spatial continuity and high structural similarity in
the 3D view. Compared with the IVTCG method the CIML method rarely introduced artifact
areas. The in vivo experiments demonstrate that the CIML method has excellent accuracy
and robustness compared to the other methods indicating that the CIML method had superior
performance in FMT reconstruction.
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Fig. 9. Mouse analysis: the micro-CT result. (a) Transverse view. (b) Sagittal view. (c)
Coronal view. (d) 3-D visualization.

Table 4. Optical absorption and scattering coefficient of the in vivo mouse experiment.

670nm 710nm
Organ µax(mm−1) µ

′

sx(mm−1) µam(mm−1) µ
′

sm(mm−1) g

Muscle 0.075 0.412 0.043 0.350 0.9

Heart 0.051 0.944 0.030 0.870 0.85

Lungs 0.170 2.157 0.097 2.093 0.94

Livers 0.304 0.668 0.176 0.629 0.9

Kidneys 0.058 2.204 0.034 2.021 0.86

Stomach 0.010 1.417 0.007 1.340 0.92

Fig. 10. Reconstruction results of the in vivo experiment. (a)-(d) transverse slice views of
Z=8.8 mm obtained by the FISTA, the Homotopy, the IVTCG and the CIML algorithms
respectively, while the second row illustrates the 3-D reconstruction results corresponding to
the four methods.
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The quantitative analysis also verified these results, which were displayed in Fig. 5. Regarding
the target position, the FISTA and IVTCG methods obtained relatively satisfactory reconstruction
results with an LE of 1.36 mm and 1.28 mm, respectively. The Homotopy method did not
accurately determine the location of the target. However, the LE of the CIML method is the least
and reconstructs the target region more effectively. The Dice index given by the CIML was 0.5,
which was significantly higher than other methods. The results of in vivo reconstruction showed
that the superior performance of CIML in obtaining the morphology of the fluorescence probe
distribution. The CIML method had the higher contrasts more against the background. Compared
with the other methods, the CIML method provided a large area of high signal intensity, which
significantly improved the overall CNR of the reconstructed source. In addition, the CIML
method obtains more fluorescence information and its RFY is 2.5e-3, which is 1 to 3 orders of
magnitude larger than the other methods, proving its advantages for reconstruction. Overall,
the in vivo experiment further demonstrated that the CIML method considerably improves the
performance of FMT reconstruction, which means that the CIML method has excellent potential
for biological applications.

Table 5. Quantitative results of the in vivo mouse experiments.

Method Reconstruction center CNR LE NMSE RFY Dice Time

FISTA (21.42, 29.27, 8.19) 7.97 1.36 0.1156 1.11e-06 0.2759 43.50

Homotopy (18.53, 30.61, 10.39) 23.86 2.99 0.2588 1.49e-04 0.0008 0.36
IVTCG (19.63, 29.87, 8.96) 10.23 1.28 0.0952 3.97e-06 0.2333 0.52

CIML (20.90, 29.32, 8.60) 20.15 0.81 0.0523 2.50e − 03 0.5000 9.89

5. Discussion and conclusion

In this paper, a novel distance metric has been proposed based on correntropy and a Laplacian
kernel. Several properties of the proposed metric such as nonnegativity, nonconvexity, bounded-
ness, and approximation behaviors are proved. The proposed metric has greater flexibility when
compared with the classical l0-norm and l1-norm. Moreover, by applying this robust metric to
achieve the accurate reconstruction of the internal fluorescent source, a novel robust learning
framework (CIML) has been proposed. However, the nonconvexity of the proposed CIML
makes it difficult to optimize. We designed a simple and efficient iterative algorithm to address
this problem. A continuous optimization method was developed to solve the proposed model,
which is transformed into difference of convex functions programming (DC programming). The
resulting DC optimization algorithm linearly converges. Therefore, the CIML method is a novel
reconstruction algorithm for FMT, which allows for satisfactory reconstruction and generates a
greater fluorescence yield.

To validate the performance of the CIML method, extensive numerical simulations and in vivo
mouse experiments were designed. The performance of the CIML method was illustrated via the
LE, CNR, NMSE, RFY, Dice coefficient and Time of the reconstruction results. Compared with
the FISTA, Homotopy, and IVTCG methods, the qualitative and quantitative analysis showed
that the CIML method was able to achieve the best results in terms of positioning accuracy,
image contrast, spatial resolution of the fluorescent source and morphology recovery. To evaluate
further the robustness of the CIML method, we conducted four group tests of different Gaussian
and Poisson noise intensities, respectively. The experimental results are consistent with our
theoretical justifications in section 3. With increasing noise, the advantages of the CIML method
over the other methods became more apparent. Of note, even when 25% noise was added to the
measurement data sets, the CIML method still produced satisfactory reconstruction results.
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In the numerical simulation, the reconstruction results confirmed that the CIML method is less
sensitive to the excitation points than other three methods, and it produces high fluorescence
yields while reconstructing accurately. Therefore, the CIML method offers better robustness,
stability, and efficiency. In dual-source simulation studies, the CIML method performs better
in terms of LE, NMSE, RFY and Dice compared with the other algorithms. These results
demonstrate that the CIML method is capable of accurately reconstructing the fluorescent source.
The reconstruction results of the in vivo mouse experiment further demonstrate the superiority of
the CIML method. In terms of position and spatial overlap, the reconstruction area is closely
similar to the real fluorescent source. The results of the in vivo experiment proved that the CIML
method realizes accurate reconstruction. Due to deviation and fewer surface measurements
during organ segmentation, the in vivo results are inferior to the numerical simulation results
using the same reconstruction algorithm. However, compared with the other three methods,
the reconstruction performance of the CIML method remains superior. Overall, the numerical
simulations and in vivo experiments both demonstrated the advantage of the CIML method in
terms of location accuracy and morphological.

Although the CIML method achieves encouraging reconstruction results, several challenging
problems remain in FMT. The method we designed is time-consuming. In our research, the
nonconvexity of the proposed model makes it difficult to optimize. In order to solve this challenge
problem, for DC programming algorithm, the nonconvexity problem is transformed into a series
of sub-optimization problem containing absolute value operation which is solved by linear
programming. It leads to a relatively large time cost than some traditional convex optimization
reconstruction algorithms. Besides that, in FMT reconstruction, the high dimension of the
system matrix also leads to a large amount of time consumption. In order to overcome this
limitation, some more efficiency algorithm such as simplex algorithm will be introduced to solve
the linear programming. And some dimension reduction strategies will be applied to improve
the computational efficiency in FMT reconstruction in our future work. To make the results
convincing, the regularization parameters of the Homotopy, the FISTA and the IVTCG methods
were selected by using the generalized cross-validation based method [44]. Thence all the results
were optimal or near-optimal. Moreover, the CIML method was utilized to reconstruct the
fluorescence probe distribution in this study. Its application and performance need to be further
investigated in bioluminescence tomography [45] and in cerenkov luminescence tomography
[46]. Considering the application background, in this research, we only consider the sparse
features to design the reconstruction algorithm. The proposed algorithm has better sparsity than
other convex optimization algorithms. In future research, according to some other application
needs, we will introduce some hybrid regularization strategy to simultaneously guarantee the
sparsity and smoothness of the result. In summary, the proposed CIML reconstruction method is
robust and effective for resolving the FMT inverse problem. It achieved better reconstruction
performance in both location accuracy and robustness compared with the traditional methods.
The method has excellent potential for improved reconstruction performance and to promote the
application of FMT for in vivo biological studies.
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